1. <object id="q5s5r"></object>

    2. <code id="q5s5r"><small id="q5s5r"></small></code>
      <code id="q5s5r"></code>

      <nav id="q5s5r"><video id="q5s5r"></video></nav>
      <big id="q5s5r"></big>

      埋容的PCB设计与PI仿真-3

      来源:一博科技 时间:2013-11-5 类别:PCB设计文章
      2.3.4 问题、难点与争议
           PI仿真一直都是业内的一个难点,也是存在很多争议的领域。以上的仿真结果,就存在一个疑问:由于埋容材料的使用,在一百多兆的位置出现了一个反谐振点,这是埋容材料和By Pass电容共同作用形成的阻抗峰值。这个峰值的存在,就是一个设计隐患,如果在这个频段附近存在较大的电流变化的时候,就会导致很大的电源噪声。
           如何处理这个反谐振点,主要有以下思路:
           一、 添加相应的板级By-Pass电容,抑制这个反谐振峰值。由于频点在一百多兆,在这频点起作用的电容值很小,需要的数量较多。这样就需要使用大量的小电容,没有达成节约分立电容数量的目的,并且有过设计嫌疑。
           二、 添加封装寄生电感和Die电容的参数,准确仿真整个PDN路径的阻抗。这个方法困难的地方在于很多时候拿不到封装和Die的参数。
           三、 不理会100M以上的频点的峰值。准确添加了封装和Die参数的全路径PDN阻抗分析, 100M以上频段的阻抗由于封装电感和Die电容的影响,一般情况下都会得到很好的抑制。这也是PI工程师经典的处理事情的方式,“铁路工人,各管一段”,忽略不属于我能解决的频段。
           四、 新的解决方案,取得芯片的CPM模型,然后通过对电流的分析得到准确的目标阻抗要求,避免过设计
           五、 SSN仿真分析,通过分析最终的时域噪声,来观察噪声分布的频段,以及噪声大小的变化趋势,来辅助电源PDN设计。

      2.3.5 时域纹波验证
           这个案例,我们把频域PDN阻抗曲线的结果,最终反映到时域的噪声上,图十二是针对1.5V时域SSN仿真的结果,也能看到使用埋容材料前后的区别


                                  没有使用埋容的SNN仿真结果,从波形可以测得SSN的峰峰值为0.204V
       

                                     未删除电容的SNN仿真结果,从波形可以测得SSN的峰峰值为0.076V
       

                                  删除70%电容的SNN仿真结果,从波形可以测得SSN的峰峰值为0.115V
                                                                 图十二 1.5V电源SSN仿真结果
           从SSN仿真来看,使用埋容可以有效抑制噪声,并且在噪声裕量允许的范围内,可以大幅删除板上分立电容,节约板子的空间。

      2.3.6 电源Noise测试验证
           针对0.9V电源,测试结果如下表:Ripple为电源纹波测试,测试点为电源模块附近。Noise为电源噪声测试,测试点在主芯片附近。Min是负载较轻时的测试结果,Max为芯片全速运行,负载最重时的结果。
       

                                                 表一 0.9V 电源噪声和纹波测试结果
           从上表可以看出,去除70%分立电容后,板子上的电源噪声没有明显增加, 因为使用埋容材料在177M附近形成的反谐振点没有导致较大的噪声。实际电源测试波形如下:
       

                                                  图十三  0.9V 电源未删除电容的噪声测试结果
       

                                                 图十四 0.9V 电源删除70%电容的噪声测试结果
      针对1.5V的测试结果如下:
       

                                                        表二 1.5V 电源噪声和纹波测试结果
          从上表可以看出,去除70%分立电容后,1.5V在满负荷工作时,噪声变大,量值和趋势与仿真结果类似。观察噪声分布的频率,能看到实际噪声是因为PDN阻抗曲线在低频段整体变大引起的。实际电源测试波形如下:
       

                                                         图十五1.5V 电源未删除电容的噪声测试结果
       

                                                     图十六 1.5V 电源删除70%电容的噪声测试结果

      3.结 论
          Cadence-Sigrity 仿真软件,提供了从PDN阻抗分析到时域噪声SSN分析的全套解决方案,可以完美的支持PI设计仿真的需要。
           通过Power SI提取PDN的阻抗,然后和Target Impedance进行对比,来衡量埋容的PCB设计带来的影响,同时进行电容优化。(这时候也可以采用Cadence-Sigrity的OPI 工具来协助电容选择和优化,效率更高)
           然后采用Cadence-Sigrity的Speed 2000来进行SSN仿真分析,从时域角度验证埋容的PCB设计,确保设计成功。

      埋容的PCB设计系列文章:

      埋容的PCB设计与PI仿真-1

      埋容的PCB设计与PI仿真-2

      上一篇:PCB设计制造之工具列表下一篇:埋容的PCB设计与PI仿真-1

      文章标签

      案例分享 Cadence等长差分层叠设计串扰 串行 DDR | DDR3DFM 电阻电源Fly ByEMC反射高速板材 HDIIPC-D-356APCB设计误区PCB设计技巧 SERDES与CDR S参数 时序射频 拓扑和端接 微带线 信号传输 Allegro 17.2 小工具 阻抗


      线路板生产

      热门文章

      典型案例


      北京赛车软件手机版